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Brain stimulation, a therapy increasingly used for neurological and
psychiatric disease, traditionally is divided into invasive approaches,
such as deep brain stimulation (DBS), and noninvasive approaches,
such as transcranial magnetic stimulation. The relationship between
these approaches is unknown, therapeutic mechanisms remain
unclear, and the ideal stimulation site for a given technique is often
ambiguous, limiting optimization of the stimulation and its applica-
tion in further disorders. In this article, we identify diseases treated
with both types of stimulation, list the stimulation sites thought to
bemost effective in each disease, and test the hypothesis that these
sites are different nodes within the same brain network as defined
by resting-state functional-connectivity MRI. Sites where DBS was
effective were functionally connected to sites where noninvasive
brain stimulation was effective across diseases including depres-
sion, Parkinson’s disease, obsessive-compulsive disorder, essential
tremor, addiction, pain, minimally conscious states, and Alzheimer’s
disease. A lack of functional connectivity identified siteswhere stim-
ulation was ineffective, and the sign of the correlation related to
whether excitatory or inhibitory noninvasive stimulationwas found
clinically effective. These results suggest that resting-state func-
tional connectivity may be useful for translating therapy between
stimulation modalities, optimizing treatment, and identifying new
stimulation targets. More broadly, this work supports a network
perspective toward understanding and treating neuropsychiatric
disease, highlighting the therapeutic potential of targeted brain
network modulation.
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A promising treatment approach for many psychiatric and
neurological diseases is focal brain stimulation, tradition-

ally divided into invasive approaches requiring neurosurgery and
noninvasive approaches that stimulate the brain from outside the
skull. The dominant invasive treatment is deep brain stimulation
(DBS) in which an electrode is surgically implanted deep in the
brain and used to deliver electrical pulses at high frequency
(generally 120–160 Hz) (1, 2). In some instances, the therapeutic
effects of DBS resemble those of structural lesions at the same site,
but in other cases DBS appears to activate the stimulated region or
adjacent white matter fibers (1, 2). DBS systems are approved by
the US Food and Drug Administration (FDA) for treatment of
essential tremor and Parkinson’s disease, have humanitarian de-
vice exemptions for dystonia and obsessive compulsive disorder,
and are being explored as a therapy for many other diseases in-
cluding depression, Alzheimer’s disease, and even minimally
conscious states (1, 3–6).
Although DBS can result in dramatic therapeutic benefit, the

risk inherent in neurosurgery has motivated research into non-

invasive alternatives (7–9). Transcranial magnetic stimulation (TMS)
and transcranial direct current stimulation (tDCS) have received the
most investigation (10–13). TMS uses a rapidly changing magnetic
field to induce currents and action potentials in underlying brain
tissue, whereas tDCS involves the application of weak (1–2 mA)
electrical currents to modulate neuronal membrane potential. De-
pending on the stimulation parameters, both TMS and tDCS can be
used to excite (>5 Hz TMS, anodal tDCS) or inhibit (<1 Hz TMS,
cathodal tDCS) the underlying cortical tissue (10). These neuro-
physiological effects are well validated only for the primary motor
cortex (M1) and can vary across subjects; however the terms “ex-
citatory” and “inhibitory” stimulation are used often and are used
here as a shorthand to refer to TMS or tDCS at these parameters.
The primary clinical application and FDA-approved indication is
high-frequency (i.e., excitatory) TMS to the left dorsolateral pre-
frontal cortex (DLPFC) for treatment of medication-refractory
depression (14–19). However, TMS and tDCS have shown evi-
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dence of efficacy in a number of other neurological and psychiatric
disorders (10–13).
How invasive and noninvasive brain stimulation relate to one

another has received relatively little attention. Because of the
different FDA-approved indications, patient populations, sites of
administration, and presumed mechanisms of action, they have
remained largely separate clinical and scientific fields. However,
these boundaries are beginning to erode. First, the patient pop-
ulations treated with invasive or noninvasive brain stimulation are
starting to converge. For example, the primary indication for TMS
is depression, and the primary indication for DBS is Parkinson’s
disease, butDBS is being investigated as a treatment for depression,
and TMS is being investigated as a treatment for Parkinson’s dis-
ease (4, 20–25). Second, although therapeutic mechanisms remain
unknown, invasive and noninvasive brain stimulation share im-
portant properties. In both cases, the effects of stimulation propa-
gate beyond the stimulation site to impact a distributed set of
connected brain regions (i.e., a brain network) (4, 10, 26–33). Given
increasing evidence that these network effects are relevant to
therapeutic response (4, 34–36), it is possible that invasive and
noninvasive stimulation of different brain regions actually modify
the same brain network to provide therapeutic benefit.
Linking invasive and noninvasive brain stimulation and iden-

tifying the relevant brain networks is important for several rea-
sons. First, findings could be used to improve treatments. For
example, TMS treatment of depression is limited by the inability to
identify the optimal stimulation site in the left DLPFC (15, 18, 37–
39). Using resting-state functional-connectivity MRI (rs-fcMRI),
a technique used to visualize brain networks based on correlated
fluctuations in blood oxygenation (40–42), the efficacy of different
DLPFC TMS sites has been related to their correlation with the
subgenual cingulate, a DBS target for depression (43). rs-fcMRI
maps with the subgenual cingulate thus might be used to select an
optimal TMS site in the DLPFC, perhaps even individualized to
specific patients (44). Because identification of the ideal stimula-
tion site is a ubiquitous problem across diseases and brain-stimu-
lation modalities (1, 15, 18, 37–39), such an approach could prove
valuable across disorders. Second, although the primary goal of
therapeutic brain stimulation is to help patients, it also can provide
unique and fundamental insight into human brain function. In-
vestigating how different types of stimulation to different brain
regions could impart similar behavioral effects is relevant to un-
derstanding the functional role of brain networks.

Here we investigate all neurological and psychiatric diseases
treated with both invasive and noninvasive brain stimulation. We
list the stimulation sites that have evidence of efficacy in each
disease and test the hypothesis that these sites represent differ-
ent nodes in the same brain network as visualized with rs-fcMRI.
Further, we determine whether this approach can identify sites
where stimulation is ineffective and determine which type of
noninvasive brain stimulation (excitatory or inhibitory) will prove
effective. To test these hypotheses, we take advantage of a unique
rs-fcMRI dataset collected from 1,000 normal subjects, processed
to allow precise subcortical and cortical alignment between sub-
jects and with anatomical brain atlases (45–47).

Results
Our literature search revealed 14 different psychiatric or neu-
rological diseases with published reports of efficacy for both invasive
and noninvasive brain stimulation (Table 1). For each disease, DBS
targets were used as seed regions for rs-fcMRI analysis (Experi-
mental Procedures and Fig. 1). Correlations between DBS seed
regions and all other brain voxels were computed and related to sites
with evidence of efficacy as targets for noninvasive brain stimulation.
For example, the subgenual cingulate, the primary DBS target in
depression, is negatively correlated with the DLPFC, the primary
TMS target for depression (Fig. 1). We repeated this process for
each of the 14 brain diseases, initially focusing on the sites of invasive
and noninvasive brain stimulation that had the best evidence of
efficacy in each disease (Fig. 2).
Qualitatively, the sites of effective DBS tended to be corre-

lated (positively or negatively) with the sites of effective non-
invasive stimulation across each of the 14 diseases (Fig. 2). To
quantify this impression and to determine whether this association
was significant, we compared the average correlation value un-
derlying each noninvasive stimulation site with the values obtained
from 372 similar but randomly distributed sites across the brain
surface (Experimental Procedures). In 13 of the 14 diseases (all
except epilepsy) the best site for DBS was significantly more cor-
related or anticorrelated with the best site for noninvasive stimu-
lation than with random sites (Fig. 3A, black bars, P < 0.001).
Because many diseases have more than one site at which invasive
or noninvasive stimulation shows evidence of efficacy (Table 1),
and indeed the “best site” can be debatable, we repeated the
analysis, including all stimulation sites. The link between the sites
of invasive and noninvasive brain stimulation remained signifi-

Table 1. Diseases with evidence of efficacy for both invasive and noninvasive brain stimulation and the stimulation targets

Disease
Target for invasive
stimulation (DBS)

Target for noninvasive
stimulation (TMS, tDCS) References

Addiction NA DLPFC (laterality unclear) (163–167)
Alzheimer’s disease Fornix Bilateral DLPFC (± parietal, temporal) (5, 83, 156, 168, 169)
Anorexia NA, subgenual Left DLPFC (170–174)
Depression Subgenual, VC/VS, NA, MFB, habenula Left DLPFC, right DLPFC (4, 14, 18–21, 24, 25)
Dystonia GPi SMA/ACC, premotor (22, 175–177)
Epilepsy Thalamus (AN, CM), MTL Active EEG focus, cerebellum (178–183)
Essential tremor VIM Midline cerebellum, lateral cerebellum, M1 (2, 53, 55, 56)
Gait dysfunction PPN M1 (leg area) (66, 184–186)
Huntington’s disease GPi SMA (187, 188)
Minimally conscious Thalamus (intralaminar/CL, CM/Pf) Right DLPFC, M1 (6, 189–191)
Obsessive compulsive disorder VC/VS, NA, ALIC, STN Left orbitofrontal, pre-SMA (192–198)
Pain PAG, thalamus (VPL/VPM) M1 (61, 152, 199)
Parkinson’s disease STN, GPi M1, SMA (2, 22, 23)
Tourette’s syndrome Thalamus (CM/Pf), GPi, NA, ALIC SMA (200–202)

Italics indicate targets of inhibitory rather than excitatory noninvasive stimulation. ACC, anterior cingulate cortex; ALIC, anterior limb of the internal capsule;
AN, anterior nucleus; CL, central lateral nucleus; CM, central median nucleus; DLPFC, dorsal lateral prefrontal cortex; GPi, globus pallidus pars internus; M1,
primary motor cortex; MFB, medial forebrain bundle; MTL, medial temporal lobe; NA, nucleus accumbens; PAG, periaqueductal gray; Pf, parafasicular nucleus;
PPN, pedunculopontine nucleus; SMA, supplementary motor area; STN, subthalamic nucleus; VC/VS, ventral capsule/ventral striatum; VIM, ventral intermediate
nucleus; VPL, ventral posterior lateral nucleus; VPM, ventral posterior medial nucleus.
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cantly greater than chance in 10 of the 14 diseases (Fig. 3A, gray
bars, P < 0.01). In addition to computing statistics within each
disease, we also computed statistics across the 14 diseases (Fig. 3B).
Across diseases, DBS sites showed significantly stronger functional
connectivity to the sites where noninvasive brain stimulation was
effective than to random sites, regardless of whether one consid-
ered only the best sites for stimulation in each disease (Fig. 3B,
black bar) or all sites with evidence of efficacy (Fig. 3B, gray bar).
Next we investigated whether the sites where brain stimulation

was ineffective were characterized by a lack of functional con-
nectivity. To do so, we considered diseases in which a specific
brain-stimulation site had been reported to be ineffective. For
example, multiple randomized, controlled trials in Parkinson’s
disease have found that noninvasive stimulation to the left DLPFC
fails to show significant motor improvements similar to those seen
with noninvasive stimulation to M1 (48–52). Consistent with these
findings, the Parkinson’s DBS site in the subthalamic nucleus
(STN) showed strong connectivity to M1 but not to the left
DLPFC (Fig. 4A). In fact, connectivity between the STN and left
DLPFC was less than the connectivity between the STN and
random sites (Fig. 4A, graph). In other diseases, evidence that
a specific site of noninvasive stimulation is ineffective is not as
strong; however, in general, stimulation of cerebellum appears to
be more effective for essential tremor than stimulation of M1 (53–
57), stimulation of M1 appears to be more effective for pain than
stimulation of DLPFC (58–61), and stimulation of the left DLPFC
appears to be more effective for depression than stimulation of the
cranial vertex (top of the head) (17). In all cases, the DBS site
with the best evidence of efficacy was significantly more con-
nected to the sites where noninvasive stimulation was effective
than to sites where noninvasive stimulation was ineffective, with
connectivity to the ineffective site falling at or below the con-
nectivity to random sites (Fig. 4 A–D).
One might use a similar strategy to predict whether DBS will be

effective or ineffective at particular sites. For example, in Par-
kinson’s disease DBS to the ventral intermediate nucleus (VIM)
has been used for tremor but generally is ineffective for other
motor symptoms such as bradykinesia and rigidity (2). These
symptoms do respond to DBS of the STN or globus pallidus
pars interna (GPi) as well as to noninvasive stimulation of M1
(22, 62). Consistent with this dissociation, there was strong
functional connectivity between M1 and both the STN and GPi
but not the VIM (Fig. 4E).

An important question is whether the sign of DBS functional
connectivity (i.e., positive or negative correlation) relates to
whether excitatory or inhibitory noninvasive stimulation is more
effective. For example, both M1 and the supplementary motor
area (SMA) are targets for noninvasive brain stimulation in Par-
kinson’s disease but show a double dissociation regarding the type
of stimulation found to be effective (Fig. 5A). Excitatory stimula-
tion toM1 results in an improvement in Parkinson’s scores (50, 63–
66), but inhibitory stimulation shows little effect (63, 64, 67). In
contrast, inhibitory stimulation to the SMA appears to improve
scores (23, 68, 69), but excitatory stimulation leads to no effect or
even to a worsening of symptoms (23, 68, 70). The opposite sign of
the DBS correlation to these sites mirrored the opposite effects of
excitatory and inhibitory noninvasive stimulation.
Across all diseases, sites at which inhibitory noninvasive stimu-

lation was beneficial tended to be positively correlated with the
DBS site, but sites at which excitatory stimulation was beneficial
tended to be negatively correlated. This difference between sites of
inhibitory and excitatory noninvasive stimulation was significant
(P < 0.005), regardless of whether one considered only the sites in
each disease where stimulation was most effective (Fig. 5B) or all
sites with reported efficacy (Fig. 5C).
Finally, we preformed several supplementary analyses to ex-

plore potential caveats of the above findings. Because rs-fcMRI
results and particularly anticorrelations can depend on processing
methods (71–75), we replicated our findings using an alternative
approach that avoids the mathematical constraints associated with
global signal regression (74) (Fig. S1). To ensure that results were
not dependent on the clinical data from any particular disease, we
randomly omitted any three diseases from the group of 14 and
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Fig. 1. Methodological approach for linking sites for invasive and non-
invasive brain stimulation. (A) An ROI is created at a DBS site with reported
efficacy for a given disease, in this case the subgenual cingulate for de-
pression. (B) For each of 1,000 normal subjects, spontaneous modulations in
the fMRI signal are extracted from this DBS ROI. (C) This time course is cor-
related with all other brain voxels and then averaged across subjects to create
a DBS correlation map. (D) An ROI is created at the site where noninvasive
stimulation is reported effective in the given disease, in this case the left
DLPFC. (E) The site of noninvasive brain stimulation is illustrated on the DBS
correlation map using a circle centered over the site.
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Fig. 2. Sites for invasive and noninvasive brain stimulation with the best
evidence of therapeutic efficacy in each disease are functionally connected.
For each disease, the site at which DBS is most effective is shown in red.
Resting-state functional connectivity with this site is shown along with the
correspondence to the site at which noninvasive stimulation is most effective
in each disease (circles). Black circles indicate sites at which noninvasive ex-
citatory stimulation (>5 Hz TMS or anodal tDCS) has been reported to be
efficacious. White circles indicate sites where inhibitory stimulation (<1 Hz
TMS or cathodal tDCS) has been reported to be efficacious.
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found that the relationship between the best sites for invasive and
noninvasive brain stimulation remained significant at the group
level (P < 0.05). To explore whether the rs-fcMRI results in 1,000
healthy subjects would be relevant to patient populations, we
replicated our analyses in 56 patients with Parkinson’s disease
(Fig. S2) (76) and in 23 patients with medication-refractory de-
pression presenting for TMS (Fig. S3). Finally, because activation
of specific white matter tracks has been shown to be important for
DBS effects in the subgenual cingulate (77–79), the VIM nucleus of
the thalamus (80–82), and the fornix (5, 83), we explored anatomical
connectivity with these sites using diffusion tractography and com-
pared those results with the present findings with rs-fcMRI (Fig. S4).
We found convergent anatomical and functional connectivity from
the subgenual cingulate to the medial prefrontal cortex, from the
VIM nucleus to the cerebellum and motor regions (the SMA and
premotor), and from the fornix to memory regions (hippocampus
and retrosplenial cortex).

Discussion
This article links sites of invasive and noninvasive brain stimu-
lation across neurological and psychiatric diseases by identifying
resting-state brain networks. Sites effective for the same disease
tend to fall within the same brain network, ineffective sites fall
outside this network, and the sign of network correlation appears
to be relevant for determining whether excitatory or inhibitory
noninvasive stimulation is more effective. These results motivate
a network perspective on brain stimulation that is relevant for
understanding mechanisms of action and generating testable hy-
potheses regarding improving and optimizing therapy.

Identifying Stimulation-Related Brain Networks. Psychiatric and
neurological diseases are increasingly conceptualized as diseases of
brain networks, and network considerations have motivated the
selection of many brain stimulation targets (34, 84–87). For ex-
ample, the STN, GPi, M1, and SMA were chosen as stimulation
targets in Parkinson’s disease in part because they are part of the
network of brain regions implicated in movement. As such, one
could argue that the finding that different sites for therapeutic
brain stimulation are part of the same brain network is expected
and perhaps even trivial. However, how one defines and visualizes
these networks is not straightforward, and predicting functional
relationships relevant for therapeutic brain stimulation is difficult.
For example, the STN is connected anatomically to both M1 and
the SMA (88), so how does one predict that the motor symptoms
in Parkinson’s disease would respond differently to noninvasive

stimulation at these two sites? The subgenual cingulate lacks
prominent direct anatomical connections to the DLPFC (89, 90),
so how does one determine whether these sites are part of a single
network that is relevant to depression? Finally, after defining and
identifying stimulation-related brain networks, determining whether
network properties transcend individual diseases and might guide
application in other disorders is nontrivial.
Many techniques are potentially useful for investigating the

brain networks associated with brain-stimulation sites. Here we
focus on rs-fcMRI for both theoretical and practical reasons. From
the theoretical standpoint, interactions observed with rs-fcMRI are
sensitive to the influence of polysynaptic connectivity (40, 41, 91,
92). This sensitivity allows the identification of distant and complex
network interactions that match well with data suggesting that the
effects of brain stimulation are also polysynaptic (4, 10, 26–33).
From the practical standpoint, prior work has used rs-fcMRI to
predict the propagation of brain stimulation (93–95), link sites of
invasive and noninvasive stimulation in depression (43), and
identify biomarkers of the response to therapeutic brain stimu-
lation (36). Moving forward, rs-fcMRI has potential as a clinical
tool (42) and is robust enough to identify reproducible, in-
dividualized stimulation targets (44).
However, like any technique, rs-fcMRI has important limi-

tations and caveats that must be recognized. First, although both
rs-fcMRI and brain stimulation are polysynaptic, they do not
necessarily reflect the same polysynaptic phenomena, and dis-
crepancies exist (93–95). More advanced rs-fcMRI processing
techniques designed to predict the influence of one region on
another may prove better for identifying stimulation-based brain
networks (96–98). Second, although there is a strong relationship
between rs-fcMRI and anatomical white matter connectivity,
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there are important differences (91, 99–101). This difference is
relevant to the present investigation, because some DBS targets
are white matter structures, and in several cases activation of
specific white matter tracks has been related to clinical DBS
response (32, 77–82, 102, 103). In these cases, we found conver-
gence between anatomical connectivity measured with diffusion
tractography and positive correlations measured with rs-fcMRI
(Fig. S4) (77–82, 104). Perhaps surprising are the rs-fcMRI cor-
relations between the fornix, a white matter structure, and distant
memory regions including the hippocampus and retrosplenial
cortex (Fig. S4C). rs-fcMRI clearly is better suited for investigating
gray-matter targets; however white matter does contain a small
fMRI signal that has been used for activation and rs-fcMRI
mapping (105–108). Future work integrating the complementary
strengths of diffusion-based tractography and rs-fcMRI is likely to
prove valuable. We did not attempt to relate anatomical connec-
tivity to rs-fcMRI anticorrelations, because doing so would require
complicated modeling beyond the scope of the present investi-
gation (109–111). However, such models suggest that anticorre-
lations emerge as a functional consequence of multiple indirect
anatomical connections and temporal delays (109–111). Ongoing
advances in hardware and software are likely to improve upon
these anatomy-based models further and soon may predict the
present rs-fcMRI relationships as well as brain-stimulation effects
(91, 112–114).
In addition to the above caveats, rs-fcMRI has smaller technical

limitations that deserve mention. The processing approaches used
to eliminate global signal fluctuations have a significant impact on
observed anticorrelations (71–75). It is important that our results
remained significant with two different processing strategies;
however, further work is needed to determine the best approach to
predict the results of brain stimulation. Second, the spatial reso-
lution of rs-fcMRI is limited. Small changes in DBS electrode po-
sition below this resolution can have profound effects on clinical
response that may limit the utility of rs-fcMRI (115–117). Finally,
seed-based functional-connectivity results are highly dependent on
the position of the seed region. To avoid bias, we defined seed
regions based on published atlases or coordinates whenever pos-
sible (116, 118–120). However, effective DBS electrode contacts
may lie outside the targeted neuroanatomical structure (e.g., ref.
115), and modeling the volume of tissue affected by DBS is non-
trivial (116, 121). Similarly, regions of interest (ROIs) representing
sites of noninvasive brain stimulation often had to be approximated
based on clinical descriptions and scalp landmarks and used a rel-

atively simple model of tissue activation (44, 122, 123). We hope
that this article and others like it will encourage the use of neuro-
navigation in future TMS clinical trials, improving our ability to
relate brain-stimulation sites to brain networks.
One final feature of our approach that should be highlighted is

that for most analyses we used rs-fcMRI data from a large cohort
of normal subjects, not data from patients. The finding that rs-
fcMRI patterns in normal subjects relate to clinical outcome
data from patients builds on prior work showing that rs-fcMRI
patterns in normal subjects predict disease patterns in patients
(86, 124). These results are important in suggesting that large
normative datasets could be used to guide therapy in patients,
potentially representing a direct therapeutic application of the
HumanConnectomeProject (125).Although such normative group-
level targeting of brain stimulation may be valuable, additional
benefit could come from targeting based on rs-fcMRI in patients and
perhaps even individualized to specific patients (44). As such, it is
reasonable to ask whether our results in normal subjects would hold
true in disease populations, given that rs-fcMRI is known to be ab-
normal in different disease states (42, 126). Although differences in
the cohorts were present, for the most part our results in normal
subjects were replicable in patients with Parkinson’s disease and
medication-refractory depression (Figs. S1 and S2). These results are
consistent with prior findings suggesting that disease represents
a deviation in the normal connectivity pattern but generally not a
completely different pattern (for examples, see refs. 43, 127, and
128). Whether connectivity from normative databases, groups of
patients, or individual patients will prove most informative in un-
derstanding and targeting brain stimulation requires further work.

Brain Diseases Treated with both Invasive and Noninvasive Stimulation.
We provide a comprehensive list of brain conditions across psy-
chiatry and neurology in which there is evidence of efficacy for
both invasive and noninvasive stimulation (Table 1). However, this
list is intended as a resource to guide research and should not be
interpreted as a formal meta-analysis or evidence of proven clin-
ical efficacy. Recently, for example, two multisite trials of prom-
ising DBS targets for depression were halted for futility (25).
Determining why these results differ from prior findings and in-
corporating data from ongoing trials will be necessary before de-
finitive statements on clinical efficacy can be made. Importantly,
the goal of this article is not to evaluate the clinical efficacy of any
particular brain-stimulation target but to synthesize existing brain-
stimulation data across modalities and diseases in a way that
allows new insights and testable hypotheses. That our primary
finding remains significant after the random omission of any three
of the 14 diseases suggests that it will be rather robust to negative
results from any given trial.
Although invasive and noninvasive brain stimulation are being

used increasingly to treat patients with the same diagnosis, the
patient cohorts are not necessarily the same. Patients treated
with DBS generally are more severely afflicted and treatment
refractory that those treated with noninvasive stimulation, raising
the question of whether they share the same pathophysiology.
Whether patients with the same disease severity will respond equally
well to different types of brain stimulation at different network
nodes is an important topic for future investigation.
Our study was limited to DBS, TMS, and tDCS; however,

other brain-stimulation techniques deserve mention. Invasive
cortical stimulation involves the surgical implantation of an elec-
trode on the surface of the brain. The current results are likely to be
pertinent to this technique, because the sites of cortical implantation
tend to be the same targets used for noninvasive stimulation, in-
cludingM1 in Parkinson’s disease (129, 130),M1 in essential tremor
(54), premotor cortex in dystonia (131), left DLPFC in depression
(132), cerebellum in epilepsy (133), and M1 in pain (61). Other
noninvasive brain-stimulation modalities include electroconvulsive
therapy and vagal nerve stimulation, which show therapeutic effi-

Parkinson’s Disease CA All Diseases, Best SitesB All Diseases, All Sites

Fig. 5. Positive versus negative resting-state functional connectivity with
DBS sites relates to whether excitatory (>5 Hz TMS or anodal tDCS) or in-
hibitory (<1 Hz TMS or cathodal tDCS) noninvasive brain stimulation has been
found to be more beneficial. (A) Resting-state functional connectivity with
the STN shows negative correlation with M1 (black circle) and positive cor-
relation with the SMA (white circle), consistent with the double dissociation
in clinical benefit seen with excitatory versus inhibitory noninvasive brain
stimulation at these sites (table). (B and C) Across diseases, sites at which
inhibitory noninvasive brain stimulation was reported to be beneficial were
more likely to be positively correlated with the DBS site; sites at which ex-
citatory stimulation was reported to be beneficial were more likely to be
negatively correlated. Results are shown for the best stimulation sites in each
disease (B) and for all stimulation sites (C). **P < 0.005.
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cacy but are not applied to a specific brain location, and techniques
for which therapeutic investigation is ongoing, such as focused
pulsed ultrasound, magnetic seizure therapy, and light-stimulation
therapy. The relevance of the current results to these other non-
invasive brain-stimulation modalities remains to be determined.

Insight into the Therapeutic Mechanisms of Brain Stimulation. The
mechanism of action for both invasive and noninvasive brain
stimulation remains a matter of intense investigation and signifi-
cant debate (1, 2, 10–12, 33). The current finding that both types of
stimulation impact nodes in the same network supports a growing
belief that network-level effects may be as important as local effects
in understanding the therapeutic response (1, 10, 33, 35). An im-
portant question is how different types of brain stimulation with
complex neurophysiological effects applied to different nodes of a
network could impart similar symptomatic benefit. Here we high-
light four possibilities. First, symptoms could be caused by activity
in one region, and stimulation at other nodes could propagate
through anatomical connections to impact this region (4, 10, 26–
33). Second, symptoms could be caused by the balance of activity
between brain regions, rather than by activity in a single region, so
that stimulation of multiple different regions could modify this
balance (4, 35). Third, symptoms could be caused by abnormal
connectivity within a brain network, and stimulation of any node
of this network could alter such connectivity (35, 42, 126, 134–
139). Finally, symptoms could be caused by pathological oscil-
lations occurring within a network, and stimulation of any node of
the network could break this pathological rhythm (33, 140–144).
These various mechanisms of network modulation are by no

means mutually exclusive, and different mechanisms may explain
the different time scales over which therapeutic responses can
occur (1). For example, breaking abnormal oscillations may un-
derlie the immediate impact of DBS on tremor, whereas changes
in network connectivity could underlie the delayed effect of DBS
on dystonia or TMS on depression (36).

Implications for Targeting Therapy. Guiding noninvasive stimulation
based on invasive stimulation. One of the most important practical
implications of the present work is a testable method for trans-
lating the success of DBS into new and improved noninvasive
treatments. For example, the current FDA-approved approach for
targeting TMS to the DLPFC for the treatment of depression is to
stimulate a spot 5 cm anterior to the motor cortex along the cur-
vature of the scalp (14–17). It is not surprising that this technique
leads to variability in both the stimulated region and therapeutic
response (15, 18, 37–39). Despite widespread recognition of this
problem, there was no clear neurobiological basis upon which to
base a better targeting alternative. The promising success of DBS
to the subgenual cingulate in the same disease (4, 145) suggests
that connectivity with the subgenual could help refine target se-
lection in the DLPFC (43, 44). In a similar manner, connectivity
with other DBS sites may help refine targets at other TMS nodes.
Beyond refining targets, DBS connectivity may help identify

completely new targets. For example, subgenual connectivity sug-
gests that TMS to the parietal cortex may have an antidepressant
effect similar to that seen with TMS to the DLPFC (146, 147).
Similarly, connectivity with the nucleus accumbens suggests that
lateral orbitofrontal cortex may be a useful stimulation target for
addiction and compulsions, a suggestion that is consistent with
recent evidence from animal models (148).
Guiding invasive stimulation based on noninvasive stimulation. One also
can invert this strategy and use distributed cortical sites or net-
works to identify an ideal site for DBS. For example, rs-fcMRI
with motor and cerebellar networks identifies foci near the VIM
and has been suggested as a guide for DBS in essential tremor
(149). The practical utility of this approach may depend on im-
proved spatial resolution and rs-fcMRI processing techniques.
However, even at its current resolution, rs-fcMRI may prove

valuable in determining which nucleus to pursue in the first place.
For example, trials for DBS in pain have produced heterogeneous
results, and in fact pain (or, at least, trigeminal neuralgia) is one
condition in which noninvasive brain stimulation may have better
efficacy than DBS (61). In theory, one could examine connectivity
with sites of effective or ineffective noninvasive stimulation in M1
to identify candidate DBS sites for different aspects of pain.
Another way in which noninvasive brain stimulation could guide

DBS is to allow preoperative piloting of the impact of invasive
stimulation. For example, there is some evidence that TMS to M1
may predict the effect of surgically implanted epidural electrical
stimulation (150). One could imagine stimulating cortical patterns
reflecting the STN versus theGPi to indicate which nucleus should
be targeted in a given patient with Parkinson’s disease (151). Even
more valuable could be stimulating patterns associated with dif-
ferent experimental DBS targets to determine which DBS site
should be pursued in a clinical trial.
Multifocal stimulation. A network perspective on brain stimulation
suggests that multiple different sites can serve as nodes to influence
a given network and raises the question of whether additional benefit
could be obtained by treating multiple sites. Multifocal DBS has
been used in pain and Parkinson’s disease (152, 153), multifocal
TMS has been used in Parkinson’s disease and Alzheimer’s disease
(154–156), and the excitatory/inhibitory effect of the two tDCS
electrodes has been used in stroke recovery (157). Moving beyond
two sites, the DBS correlation maps presented here identify entire
cortical patterns that potentially could be stimulated or inhibited
with multifocal TMS (158, 159) or multifocal tDCS arrays (160). In
fact, algorithms recently have been developed that generate tDCS
arrays designed tomatch a given cortical pattern optimally, including
patterns based on rs-fcMRI with effective sites for DBS (160).

Conclusions
Across psychiatric and neurological diseases, sites for invasive and
noninvasive brain stimulation fall within the same brain network,
as defined by rs-fcMRI. Such findings have implications for un-
derstanding brain stimulation as a network phenomenon and
generate specific hypotheses regarding optimization of brain-
stimulation therapy that can be tested in future clinical studies.

Experimental Procedures
Diseases or conditions with published reports suggesting efficacy of both DBS
and a noninvasive brain-stimulation modality (TMS or tDCS) were identified
via a PubMed search with predefined search criteria. For each stimulation
target, an ROI was created based on existing atlases or neuroanatomical
coordinates (118). Noninvasive stimulation targets were modeled as spheres
with a 12-mm radius of graded intensity (44). ROI coordinates and associated
references are available for each target of invasive (Table S1) and non-
invasive (Table S2) stimulation. Each DBS ROI was used as a seed region in a
seed-based rs-fcMRI analysis (40) using a previously published rs-fcMRI dataset
of 1,000 normal subjects (47). MRI data were processed with a combination of
nonlinear volumetric warping and surface registration to allow precise sub-
cortical and cortical alignment (45, 46). Processing involved removal of con-
founding variables, including global signal regression (161); an alternative
strategy avoiding global signal regression was used also (74, 162). For each
resulting DBS correlation map, the average voxel value underlying each
noninvasive stimulation site was computed and compared statistically with
the values underlying 372 random sites scattered across the brain surface.

Additional methodological details are given in SI Experimental Procedures.
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